
“ ”
A Fast Dynamic Language for Technical Computing

Created by: Jeff Bezanson, Stefan Karpinski, Viral B. Shah,
Alan Edelman et. al.

1 / 11

A sane and friendly programming language which allows

to write clean high level code

and do fast low level number crunching

in one language within one framework.

2 / 11

Some stated design principles

Open source with an MIT licensed core

Dynamically typed with fast user-defined types

Multiple dispatch combined with a parametric type system

JIT compiler - fast vectorized and fast iterative code

Metaprogramming

Single environment to do technical computing and
surrounding general programming tasks

3 / 11

Example: Running average

1 X = cumsum(randn(10^6)) #random walk

2

3 # running average of order three, interactive style

4

runavg3(X) = [(X[i-1] + X[i] + X[i+1])/3 for

i=2:length(X)-1]

5

6 function runavg(X, d) #first shot at a generalization

7 n = length(X)

8 Y = similar(X, n - d + 1)

9 Y[1] = mean(X[1:d])

10 for i in 2:(n-d+1)

11 Y[i] = Y[i-1] + 1/d * (X[i-1+d] - X[i-1])

12 end

13 Y

14 end

4 / 11

Julia unimposingly computes the result very fast:

julia> @elapsed runavg3(X)

0.003496773

julia> @elapsed runavg(X,3)

0.004001902

julia> @elapsed runavg(X,30)

0.004068611

julia> @elapsed cumsum(X)

0.004236988

(Most of this is allocating the new array.)

5 / 11

Type system

Two uses

Dynamic: Using types to dispatch the right method at runtime

expm(A::HermOrSym) = (F = eigfact(A);

F.vectors*Diagonal(exp(F.values))*F.vectors’)

(Quasi) static: Helping the just-in-time compiler

julia> xs = 1:5

julia>[i^3 for i in xs]

5-element Array{Any,1}

julia>[i::Int^3 for i in xs]

5-element Array{Int64,1}

6 / 11

Method dispatch

#define MIN(a,b) (((a)<(b))?(a):(b))

#define MAX(a,b) (((a)>(b))?(a):(b))

You remember?

Static languanges: Multiple dispatch, can follow a
elaborated pattern, at compile time (function overloading.)

Dynamic languanges: Single dispatch or no dispatch,
simple, at run time.

Julia: Elaborated, multiple dispatch with promotion rules, but
does not slow down JIT’ed code.

7 / 11

Function overloading in C++

You would not want to do this on runtime...

Argument-matching conversions occur in the following

order:
An exact match, in which the actual arguments exactly

match the type and number of formal arguments of one

declaration of the overloaded function. This includes

a match with one or more trivial conversions.
A match with promotions in which a match is found when one

or more of the actual arguments is promoted
A match with standard conversions in which a match is

found when one or more of the actual arguments is

converted by a standard conversion
A match with user-defined conversions in which a match is

found when one or more of the actual arguments is

converted by a user-defined conversion

A match with ellipses

(OS/390 V2R10 C/C++ Language Reference)

8 / 11

Multiple dispatch in Julia

julia> methods(max)

14 methods for generic function "max":

max(x::Float64,y::Float64) at math.jl:334

max(x::Float32,y::Float32) at math.jl:335

max(x::BigFloat,y::BigFloat) at mpfr.jl:509

max{T<:Real}(x::T<:Real,y::T<:Real) at promotion.jl:191

max(x::Real,y::Real) at promotion.jl:172
max{T1<:Real,T2<:Real}(x::T1<:Real,y::AbstractArray{T2<:Real,N})

at operators.jl:247
max{T1<:Real,T2<:Real}(x::AbstractArray{T1<:Real,N},y::T2<:Real)

at operators.jl:249
max{T1<:Real,T2<:Real}(x::AbstractArray{T1<:Real,N},y::AbstractArray{T2<:Real,N})

at operators.jl:253

max(x,y) at operators.jl:35

max(a,b,c) at operators.jl:67

max(a,b,c,xs...) at operators.jl:68

9 / 11

Metaprogramming

1 for (fname, felt) in ((:zeros,:zero),

2 (:ones,:one),

3 (:infs,:inf),

4 (:nans,:nan))

5 @eval begin

6

($fname){T}(::Type{T}, dims...) = fill!(Array(T,

dims...), ($felt)(T))

7

($fname)(dims...) = fill!(Array(Float64, dims...),

($felt)(Float64))

8

($fname){T}(x::AbstractMatrix{T}) = ($fname)(T, size(x,

1), size(x, 2))

9 end

10 end

julia> ones(3)

5-element Array{Float64,1}:

1.0

1.0

1.0
10 / 11

Word of caution

Young language, initial commit 2009, open source 2012

“Fast moving target“

Memory hungry: Compiled and specialized methods

Limited debugging support

11 / 11

