
BaNaNa Talk
Trilinos

Alexander Heinlein
May 19, 2021

TU Delft

Disclaimer
The following slides will give a brief overview over the software package Trilinos. It is far
from complete, but on the final slides, some references to additional introductory material and
tutorials will be given.

Alexander Heinlein (TU Delft) May 19, 2021 1/29

What is Trilinos?

From the report

M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B.
Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, and A. G. Salinger
An overview of the Trilinos project.
ACM Transactions on Mathematical Software (TOMS) 31.3 (2005): 397-423.

“The Trilinos Project is an effort to facilitate the design, development, integration, and
ongoing support of mathematical software libraries within an object-oriented framework for the
solution of large-scale, complex multiphysics engineering and scientific problems.”

Trilinos is a collection of more than 50 software packages:
• Each Trilinos package is a self-contained, independent piece of software with its own set

of requirements, its own development team1 and group of users.
• However, there are often certain dependencies between different Trilinos packages. Some

Trilinos packages also depend on third party libraries.
• Generally, a certain degree of interoperability of the different Trilinos packages is

provided.
1Trilinos lead: Sandia National Laboratories

Alexander Heinlein (TU Delft) May 19, 2021 2/29

Why using Trilinos?

Wide range of functionality
Data services Vectors, matrices, graphs and similar data containers, and related operations
Linear and eigen-
problem solvers

For large, distributed systems of equations

Nonlinear solvers
and analysis tools

Includes basic nonlinear approaches, continuation methods and similar

Discretizations Tools for the discretization of integral and differential equations
Framework Tools for building, testing, and integrating Trilinos capabilities

Portable parallelism
Trilinos is targeted for all major parallel architectures, including
• distributed-memory using the Message Passing Interface (MPI),
• multicore using a variety of common approaches,
• accelerators using common and emerging approaches, and
• vectorization.

“ . . . as long as a given algorithm and problem size contain enough latent parallelism, the same Trilinos
source code can be compiled and execution on any reasonable combination of distributed,
multicore, accelerator and vectorizing computing devices.” — Trilinos Website

Alexander Heinlein (TU Delft) May 19, 2021 3/29

https://trilinos.github.io

Examples for Using Trilinos

Many scientific computing software packages are based on Trilinos or provide a Trilinos interface.

Antarctica Landice Simulations

https://github.com/SNLComputation/Albany

See Heinlein, Perego, Rajamanickam (TR 2021).

Intracranial Aneurysm Simulations

https://bitbucket.org/lifev-dev/lifev-release

See Giese, Heinlein, Klawonn, Knepper,
Sonnabend (2019).

Alexander Heinlein (TU Delft) May 19, 2021 4/29

https://github.com/SNLComputation/Albany
https://bitbucket.org/lifev-dev/lifev-release

How to install Trilinos?

Option 1
Trilinos is available through most package managers for Linux operating systems.
However, when installing Trilinos via package manager, we do not have full control over its
configuration.

Option 2
In order to have full control over the configuration of Trilinos, it may be compiled and
installed from the source files.

1. The source files of Trilinos have to be downloaded:
• Trilinos is developed using a Git repository, which is hosted on GitHub:

https://github.com/trilinos/Trilinos
(Git is a free and open source distributed version control system; GitHub is a platform for
hosting git repositories)

• The code can be downloaded as a zip archive or by cloning the git repository:

g i t c l o n e h t t p s : // g i t hub . com/ t r i l i n o s / T r i l i n o s . g i t

Alexander Heinlein (TU Delft) May 19, 2021 5/29

https://github.com/trilinos/Trilinos

2. Trilinos is then configured using CMake.
(CMake is an open-source, cross-platform family of tools designed to build, test and package
software.)

• Exemplary CMake scripts are provided in the Trilinos repository in the subfolder
sampleScripts. They may have to be modified to make sure that the right paths, compilers,
flags, etc. are used.

3. In order to compile and install Trilinos, we need three directories in total. In particular,
cmake −D CMAKE_INSTALL_PREFIX=$INSTALL_DIR $SOURCE_DIR

should be executed within a BUILD_DIR directory.
(Other CMake parameters can be added with -D CMAKE_PARAMETER=value)

SOURCE_DIR is the directory with the source code of Trilinos.

BUILD_DIR is a directory which is used to compile Trilinos. It will contain both the
object files containing all the compiled source code as well as the
compiled tests and examples.

INSTALL_DIR is the directory which, finally, will contain the necessary header files and
libraries to use Trilinos as a library.

Alexander Heinlein (TU Delft) May 19, 2021 6/29

Particularly important are also the CMake parameters
−D TPL_ENABLE_XXX:BOOL=ON/OFF

for enabling/disabling the third-party library XXX and
−D Trilinos_ENABLE_YYY :BOOL=OFF

for enabling/disabling the Trilinos package YYY.
4. After configuration with cmake, Trilinos can be compiled with

make −j 4

and installed with
make i n s t a l l

Note: The parameter -j4 indicates that compilation should be performed in parallel
using 4 threads. The number of threads can be varied to reduce compilation time,
depending on the available hardware.

Alexander Heinlein (TU Delft) May 19, 2021 7/29

Dependencies
The dependencies result from the choice of packages. Examples:

MPI — Message Passing Interface2

BLAS — Basic Linear Algebra Subprograms3

LAPACK — Linear Algebra PACKage4

Boost — Peer-reviewed portable C++ libraries5

METIS & ParMETIS — Graph Partitioning6

HDF5 — Hierarchical Data Format7

MUMPS — MUltifrontal Massively Parallel sparse direct Solver8
...

...

2https://www.mpi-forum.org/
3http://www.netlib.org/blas/
4http://www.netlib.org/lapack/
5https://www.boost.org/
6http://glaros.dtc.umn.edu/gkhome/views/metis
7https://www.hdfgroup.org/solutions/hdf5/
8http://mumps.enseeiht.fr/

Alexander Heinlein (TU Delft) May 19, 2021 8/29

https://www.mpi-forum.org/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
https://www.boost.org/
http://glaros.dtc.umn.edu/gkhome/views/metis
https://www.hdfgroup.org/solutions/hdf5/
http://mumps.enseeiht.fr/

Parallelization in Trilinos

Distributed-memory parallelization

• Process-based parallelization

• Each processor has its own internal memory

⊕ No memory access conflicts

	 Requires (possibly slow) data exchange
through a network

Network

Processor

Memory

Processor

Memory

Processor

Memory

Processor

Memory

Using MPI

Shared-memory parallelization

• Thread-based parallelization

• All processors access a shared memory

⊕ Changes in shared memory are visible to all

	 Memory access conflicts

Memory

Processor Processor Processor Processor

Using

CPU GPU
OpenMP

CUDA
Pthreads

Alexander Heinlein (TU Delft) May 19, 2021 9/29

Distributed-memory parallelization (MPI)
MPI parallelization is provided through the
parallel linear algebra framework:
• At the moment, there are two different

linear algebra frameworks/packages, the
older Epetra package and the more
recent Tpetra package.

• The linear algebra frameworks both
provide parallel implementations of

• vectors,
• sparse matrices,
• redistributors,
• and more. . .

• Based on Epetra and Tpetra, Trilinos
currently provides two stacks of packages,
providing a similar range of functionality.

• Tpetra is built upon Kokkos; see right.

Shared-memory parallelization (X)
A systematic framework for shared-memory
parallelization is provided by the Kokkos
programming model:
• Kokkos implements a programming model

in C++ for writing performance portable
applications targeting all major HPC
platforms.

• KokkosKernels implements local
computational kernels for linear algebra
and graph operations, using the Kokkos
programming model.

• Support for CUDA, HPX, OpenMP and
Pthreads.

• Tpetra automatically provides access to
the functionality of Kokkos.

Alexander Heinlein (TU Delft) May 19, 2021 10/29

Overview – Trilinos Packages

MPI (Epetra-based) MPI+X (Tpetra-based)
Linear algebra Epetra & EpetraExt Tpetra
Direct sparse solvers Amesos Amesos2
Iterative solvers AztecOO Belos
Preconditioners:
• One-level (incomplete) factorization IFPACK Ifpack2
• Multigrid ML MueLu
• Domain decomposition ShyLU
Eigenproblem solvers Anasazi
Nonlinear solvers NOX & LOCA
Partitioning Isorropia & Zoltan Zoltan2
Example problems Galeri
Performance portability Kokkos & KokkosKernels
Interoperability Stratimikos & Thyra
Tools Teuchos
...

...
...

More details on https://trilinos.github.io.

Alexander Heinlein (TU Delft) May 19, 2021 11/29

https://trilinos.github.io

FROSch Domain Decomposition Solver Framework
How I am involved in Trilinos:

Lead: Sandia National
Laboratories

• Teko: Block preconditioners for multi-physics problems
• Ifpack/Ifpack2: One-level overlapping Schwarz preconditioners
→ Algebraic but not scalable

• ShyLU/BDDC: BDDC (Balancing Domain Decomposition by Constraints)
preconditioner
→ Scalable but less algebraic

FROSch (Fast and Robust Overlapping Schwarz)

• Schwarz preconditioners with algebraic coarse spaces based on extension
operators, e.g., GDSW (Generalized–Dryja–Smith–Widlund) coarse spaces

→ Algebraic and scalable
• Part of the package ShyLU:

(Joint work with the Scalable Algorithms group of the Sandia National
Laboratories (SNL), Albuquerque, USA)

• Implementation based on Xpetra
→ Can be used with Epetra and Tpetra (linear algebra packages)

Extension to current architectures, e.g., GPUs, using the Kokkos
programming model

Easy access to FROSch through unified Trilinos solver interface Thyra.

Alexander Heinlein (TU Delft) May 19, 2021 12/29

Remainder of the presentation
Focus on an introduction to the Tpetra linear algebra package with respect to
distributed-memory (MPI) parallelization.

Out of the scope
An introduction to all Trilinos packages including shared-memory (X) parallelization
using Kokkos.

Alexander Heinlein (TU Delft) May 19, 2021 13/29

Teuchos

Before working with Trilinos, please also take a look at the Teuchos package! It provides
many useful tools and is used all over the Trilinos code.

• Memory management (e.g., Teuchos::RCP smart pointers or Teuchos::Array arrays
with additional functionality)
(very helpful to replace many standard C++ data types and containers)

• Parameter lists
(very helpful for handling parameters for functions, classes, or whole programs)

• Communication (e.g., Teuchos::Comm)
(See https://docs.tri linos.org/dev/packages/teuchos/doc/html/classTeuchos_1_1Co
mm.html)

• Numerics (e.g., BLAS and LAPACK wrappers)
• Output support, exception handling, unit testing support, and much more . . .

→ Teuchos Doxygen documentation:
https://docs.trilinos.org/dev/packages/teuchos/doc/html/

Alexander Heinlein (TU Delft) May 19, 2021 14/29

https://docs.trilinos.org/dev/packages/teuchos/doc/html/classTeuchos_1_1Comm.html
https://docs.trilinos.org/dev/packages/teuchos/doc/html/classTeuchos_1_1Comm.html
https://docs.trilinos.org/dev/packages/teuchos/doc/html/

Tpetra Package

Important classes:

Tpetra::Map Parallel distributions: Contains information used to distribute
vectors, matrices, and other objects

Tpetra::Vector
& Tpetra::MultiVector

Distributed dense vectors: Provides vector services such as
scaling, norms, and dot products.

Tpetra::Operator Base class for linear operators: Abstract interface for opera-
tors (e.g., matrices and preconditioners).

Tpetra::RowMatrix Distributed sparse matrices: An abstract interface for row-
distributed sparse matrices; derived from Tpetra::Operator.

Tpetra::CrsMatrix Distributed sparse matrices: Specific implementation of
Tpetra::RowMatrix, utilizing compressed row storage (CRS)
format

Tpetra::Import
& Tpetra::Export

Import/Export classes: Allow efficient transfer of objects
built using one mapping to a new object with a new mapping.

→ Tpetra Doxygen documentation: https://docs.trilinos.org/dev/packages/tpetra/doc/html/

Alexander Heinlein (TU Delft) May 19, 2021 15/29

https://docs.trilinos.org/dev/packages/tpetra/doc/html/

Tpetra::Map

• The parallel linear algebra objects from Tpetra are distributed based on the rows.
• Example: Consider the case of a vector V ∈ R5 and a sparse matrix A ∈ R5×5

V =


v
w
x
y
z

 A =


a b
c d e

f g h
i j k

l m


distributed among two parallel processes:

V =


v
w
x
y
z

 A =


a b
c d e

f g h
i j k

l m


proc 0

proc 1

Alexander Heinlein (TU Delft) May 19, 2021 16/29

• This can be implemented by storing the local portions of the vector and the matrix:

V0 =

vx
z

 A0 =

a b
f g h

l m

 proc 0

V1 =
[
w
y

]
A1 =

[
c d e

i j k

]
proc 1

Problem: If only the partitioned data is available on the processes, the global vector V and
matrix A cannot be restored. In particular, it is not clear where the local rows are located in
the global matrix.

• Therefore, we additionally store the global row indices corresponding to the local rows,
here denoted as M0 and M1 (local-to-global map):

V0 =

vx
z

 A0 =

a b
f g h

l m

 M0 =

02
4

 proc 0

V1 =
[
w
y

]
A1 =

[
c d e

i j k

]
M1 =

[
1
3

]
proc 1

Alexander Heinlein (TU Delft) May 19, 2021 17/29

• Using the local-to-global map, the global objects are fully specified. Process 0:

V0 =

vx
z

 A0 =

a b
f g h

l m

 M0 =

02
4

 proc 0

→ V0 =


v

x

z

 A0 =


a b

f g h

l m


• Process 1:

V1 =
[
w
y

]
A1 =

[
c d e

i j k

]
M1 =

[
1
3

]
proc 1

→ V1 =


w

y

 A1 =


c d e

i j k


Alexander Heinlein (TU Delft) May 19, 2021 18/29

• In summary, in addition to the local portions of the global Tpetra objects,
local-to-global mappings are necessary to describe parallel distributed global objects:

V =


v
w
x
y
z

 A =


a b
c d e

f g h
i j k

l m


proc 0

proc 1

• The local-to-global mappings are stored in Tpetra::Map objects.

See https://docs.trilinos.org/dev/packages/tpetra/doc/html/classTpetra_1_1Map.html for
more details.

Alexander Heinlein (TU Delft) May 19, 2021 19/29

https://docs.trilinos.org/dev/packages/tpetra/doc/html/classTpetra_1_1Map.html

Tpetra::Map – Exemplary Map/Distribution for a Mesh

24

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

0

24

0 1 2

5 6 7

10 11 12

0 1 2

3 4 5

6 7 8

0

24

3 4

8 9

13 14

0 1

2 3

4 5

0

24

15 16 17

20 21 22

0 1 2

3 4 5

0

24

18 19

23 24

0 1

2 3

global indices local indices

Alexander Heinlein (TU Delft) May 19, 2021 20/29

Tpetra::Vector

As previously shown, a parallel distributed vector (Tpetra::Vector) essentially corresponds to
• arrays containing the local portions of the vectors (entries) and
• a Tpetra::Map storing the local-to-global mapping.

V =


v
w
x
y
z


proc 0

proc 1

V0 =

vx
z

 M0 =

02
4

 proc 0

V1 =
[
w
y

]
M1 =

[
1
3

]
proc 1

Constructor:
Vector (con s t Teuchos : : RCP< cons t map_type > &map , /∗ o p t i o n a l ∗/)

map Tpetra::Map object specifying the parallel distribution of the
Tpetra::Vector. The map also defines the length (local and
global) of the vector.

Alexander Heinlein (TU Delft) May 19, 2021 21/29

Tpetra::MultiVector

• The Tpetra::MultiVector allows for the construction of multiple vectors with the
same parallel distribution:

V =


v11 . . . v1m

v21 . . . v2m
...

. . .
...

v(n−1)1 . . . v(n−1)m
vn1 . . . vnm

 ∈ Rn×m with n >> m

• A typical use case would be a linear equation system with multiple right hand sides:

AX = B

with A ∈ Rn×n, X ∈ Rn×m, and B ∈ Rn×m. Here, A would typically be a sparse matrix and
X and B multivectors.

• It can also be used to implement skinny dense matrices.

→ When constructing a Tpetra::MultiVector object, the number of vectors has to be
specified.

Alexander Heinlein (TU Delft) May 19, 2021 22/29

Tpetra::CrsMatrix

As previously shown, a parallel distributed sparse matrix (Tpetra::CrsMatrix) essentially
corresponds to

• the local portions of the sparse matrix and
• a Tpetra::Map storing the local-to-global mapping corresponding to the rows.

A =


a b
c d e

f g h
i j k

l m


proc 0

proc 1

A0 =

a b
f g h

l m

 M0 =

02
4

 proc 0

A1 =
[
c d e

i j k

]
M1 =

[
1
3

]
proc 1

In the Tpetra::CrsMatrix, the local portions of the sparse matrix are stored in compressed
row storage (CRS) format.

Minimal constructor:
CrsMat r i x (con s t Teuchos : : RCP< cons t map_type > &rowMap ,

con s t s i z e_ t maxNumEntriesPerRow , /∗ o p t i o n a l ∗/)

rowMap Parallel distribution of the rows
maxNumEntriesPerRow Maximum number of nonzero entries per row

Alexander Heinlein (TU Delft) May 19, 2021 23/29

Tpetra::CrsMatrix – Column Map

• In addition to the row map, which corresponds to the local-to-global mapping of the row
indices, e.g.,

A =



a b
c d e

f g h
i j k

l m o
p q



M0 =
[
0
1

]
proc 0

M1 =
[
2
3

]
proc 1

M1 =
[
4
5

]
proc 2

there is also local-to-global mapping for the column indices, the column map.
• If the column map is not specified at the construction of the matrix, it can be generated

automatically by the Tpetra::CrsMatrix object at a later point.

Alexander Heinlein (TU Delft) May 19, 2021 24/29

A =



a b
c d e

f g h
i j k

l m o
p q



M0 =
[
0
1

]
proc 0

M1 =
[
2
3

]
proc 1

M1 =
[
4
5

]
proc 2

A compatible column map would corresponding to this row map would be:

A =



a b
c d e

f g h
i j k

l m o
p q



M̃0 =

01
2

 proc 0

M̃1 =


2
3
4
5

 proc 1

M̃2 =

34
5

 proc 2

Alexander Heinlein (TU Delft) May 19, 2021 25/29

• Column maps are generally not unique, as in our example:

A =



a b
c d e

f g h
i j k

l m o
p q



M̃0 =

01
2

 proc 0

M̃1 =


2
3
4
5

 proc 1

M̃2 =

34
5

 proc 2

Not unique means that multiple processes share global indices.

Alexander Heinlein (TU Delft) May 19, 2021 26/29

Matrix-vector multiplication:

• As mentioned earlier, the class Tpetra::CrsMatrix is derived from Tpetra::Operator.
Any Tpetra::Operator can be applied to a Tpetra::Vector or Tpetra::MultiVector
resulting in another Tpetra::Vector or Tpetra::MultiVector, respectively.

• The parallel application of any Tpetra::Operator is characterized by two maps, the
domain map and the range map.

domain map The map of any vector the operator is applied to.
range map The map of the resulting vector.

(Both the domain map and the range map have to be unique!)
• In particular, for a Tpetra::CrsMatrix, the following very general situation, where the

row map, domain map, and range map are all different, is allowed:
a b
c d e

f g h
i j k

l m




x0
x1
x2
x3
x4

 =


b0
b1
b2
b3
b4


Alexander Heinlein (TU Delft) May 19, 2021 27/29

• Performing the matrix-vector multiplication
a b
c d e

f g h
i j k

l m




x0
x1
x2
x3
x4

 =


b0
b1
b2
b3
b4


will obviously require communication.

• The corresponding communication is performed automatically. However, the domain
map and range map must have already been specified before application to a vector.

→ The domain map and range map can be specified within the fillComplete() call.
• If they are not specified, they will automatically be chosen as the row map of the matrix:

a b
c d e

f g h
i j k

l m



x0
x1
x2
x3
x4

 =


b0
b1
b2
b3
b4


Caution: In contrast to the domain map and range map, the row map does not have to be
unique.

Alexander Heinlein (TU Delft) May 19, 2021 28/29

References & Additional Material

• Trilinos GitHub repository: https://github.com/trilinos/Trilinos

• Trilinos website: https://trilinos.github.io/index.html

• Documentation: https://trilinos.github.io/documentation.html

• Each package has its own Doxygen documentation: For instance, Tpetra:
https://docs.trilinos.org/dev/packages/tpetra/doc/html/index.html

• Getting started: https://trilinos.github.io/getting_started.html

• Trilinos hands-on tutorials:
https://github.com/trilinos/Trilinos_tutorial/wiki/TrilinosHandsOnTutorial

• Kokkos ressources on GitHub: https://github.com/kokkos

Are there any questions at this point?

Remainder of the time: Short demonstration.

Alexander Heinlein (TU Delft) May 19, 2021 29/29

https://github.com/trilinos/Trilinos
https://trilinos.github.io/index.html
https://trilinos.github.io/documentation.html
https://trilinos.github.io/getting_started.html
https://github.com/trilinos/Trilinos_tutorial/wiki/TrilinosHandsOnTutorial
https://github.com/kokkos

Additional Slides

Alexander Heinlein (TU Delft) May 19, 2021

Reminder: Compressed row storage sparse matrix format

The Compressed Row Storage storage format does not require any knowledge about the structure
of the matrix and is very general purpose. As the name implies, one compresses row by row.

Definition 1 (CRS format)
The compressed row storage (CRS) format for a matrix A with n rows and m non-zero
entries is defined by two 1D arrays val and col_ind of length m and another array row_ptr of
length n + 1.
Only the m non-zero entries of A are written row-by-row in val , and the corresponding column
indices are written in col_ind . row_ptr [i] points to the first entry of the i-th row in val , where
the last entry of row_ptr points to the first entry in the fictitious n + 1-th row.

Alexander Heinlein (TU Delft) May 19, 2021

Example 2
For the matrix

A =


3 0 1 0 −4
0 0 1.3 0 0
0 7 0 0 6.4
0 0 −1 1 0
3.2 0 0 12 0


we obtain the following CRS matrix format (with 0 index base)

val 3 1 -4 1.3 7 6.4 -1 1 3.2 12
col_ind 0 2 4 2 1 4 2 3 0 3

row_ptr 0 3 4 6 8 10

Remark: There also exist other sparse matrix format, e.g., the CCS (compressed columns
storage) format. We will restrict ourselves to the CSR format because it is used in the parallel
Tpetra::CrsMatrix matrix class.

Alexander Heinlein (TU Delft) May 19, 2021

	The Teuchos Package
	Appendix

