

Baby steps towards a better
software development

Reinaldo
BaNaNa Talk

Let's check some Python's project
on github

● Scipy.
● Nutils.
● KryPy.

The content of this talk is based on these sources:
● Enterprise Software with Python Architecture and Best

Practices, by Mahmoud Hashemi. Publisher: O'Reilly Media.
● The Hitchhiker's Guide to Python: Best Practices for

Development, by Kenneth Reitz and Tanya Schlusser.
Publisher: O'Reilly.

https://github.com/scipy/scipy
https://github.com/nutils/nutils
https://github.com/andrenarchy/krypy

Outline

1 - Creating a project.

2 - Structuring a project.

3 - Adding quality.

1 - Creating a project.

● Make a directory.
● Create a README file.
● Create a .gitignore file.
● Start git.
● Add files to git.
● Create and activate virtualenv.
● Install dependecies.
● Freeze enviroment.
● Commit and push.

1 - Creating a project.

● Make a directory. $ mkdir myProject/
● Create a README file. $ vim README
● Create a .gitignore file. $ vim .gitignore or copy it
● Start git. $ git init
● Add files to git. $ git add *.py README .gitignore
● Create and activate virtualenv. (live demo)
● Install dependecies. (live demo)
● Freeze enviroment. (live demo)
● Commit and push. ($ git remote add … and $git push ..)

2 - Structuring a project.

● Project directory.
● Package directory and __init__.py.
● Docs and tools.
● Tests.
● setup.py
● MANIFEST.in, README, CHANGELOG,

LICENSE.

Adding quality.

● Pyflakes (live demo)
● Pep8 (live demo)
● Unit tests (live demo)
● Continuous integration (travis-ci live demo)

https://www.python.org/dev/peps/pep-0008/

Unit test.

“sets of one or more computer program modules
together with associated control data, usage
procedures, and operating procedures, are tested
to determine whether they are fit for use.”

(Wikipedia) (live demo)

https://en.wikipedia.org/wiki/Unit_testing

Continuous integration (travis-ci).

“Continuous Integration (CI) is a development
practice that requires developers to integrate code
into a shared repository several times a day. Each
check-in is then verified by an automated build,
allowing teams to detect problems early.”

(thoughtworks) (live demo with travis-ci)

Example of .travis.yml

https://www.thoughtworks.com/continuous-integration
https://travis-ci.org/
https://docs.travis-ci.com/user/languages/python/

CI

Interesting

● Coverage, coverage all (Python).
● Assertions for floating point (Python-numpy).
● Google style guide, c++, Java, Python.
● Google unit test, c++.
● Matlab

https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_array_almost_equal.html
https://nl.mathworks.com/help/matlab/matlab_prog/write-script-based-unit-tests.html

The takeaway

● Structure your Python code in packages and
submodules.

● Improve the quality of your code using PEP8,
pyflakes.

● Make your code maintainable adding unit tests.
● Automate your testing.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

